Архимед


Архимед
Родился: 287 до н. э.
Умер: 212 до н. э.


Биография


Архимед (Ἀρχιμήδης; 287 до н. э. — 212 до н. э.) — древнегреческий математик, физик и инженер из Сиракуз. Сделал множество открытий в геометрии. Заложил основы механики, гидростатики, был автором ряда важных изобретений.

Сведения о жизни Архимеда оставили нам Полибий, Тит Ливий, Цицерон, Плутарх, Витрувий и другие. Почти все они жили на много лет позже описываемых событий, и достоверность этих сведений оценить трудно.

Архимед родился в Сиракузах — греческой колонии на острове Сицилия. Отцом Архимеда, возможно, был математик и астроном Фидий. По утверждению Плутарха, Архимед состоял в близком родстве с Гиероном II, тираном Сиракуз. Для обучения Архимед отправился в Александрию Египетскую — научный и культурный центр того времени.

Александрия

В Александрии Архимед познакомился и подружился со знаменитыми учёными: астрономом Кононом, разносторонним учёным Эратосфеном, с которыми потом переписывался до конца жизни. В то время Александрия славилась своей библиотекой, в которой было собрано более 700 тыс. рукописей.

По-видимому, именно здесь Архимед познакомился с трудами Демокрита, Евдокса и других замечательных греческих геометров, о которых он упоминал и в своих сочинениях.

По окончании обучения Архимед вернулся на Сицилию. В Сиракузах он был окружён вниманием и не нуждался в средствах. Из-за давности лет жизнь Архимеда тесно переплелась с легендами о нём.

Легенды

Уже при жизни Архимеда вокруг его имени создавались легенды, поводом для которых служили его поразительные изобретения, производившие ошеломляющее действие на современников. Известен рассказ о том, как Архимед сумел определить, сделана ли корона царя Гиерона из чистого золота, или ювелир подмешал туда значительное количество серебра. Удельный вес золота был известен, но трудность состояла в том, чтобы точно определить объём короны: ведь она имела неправильную форму! Архимед всё время размышлял над этой задачей. Как-то он принимал ванну и заметил, что из неё вытекает такое количество воды, каков объём его тела, погружённого в ванну, и тут ему пришла в голову блестящая идея: погружая корону в воду, можно определить её объём, измерив объём вытесненной ею воды. Согласно легенде, Архимед выскочил голый на улицу с криком «Эврика!» (др.-греч. εὕρηκα), то есть «Нашёл!». В этот момент был открыт основной закон гидростатики — закон Архимеда.

Другая легенда рассказывает, что построенный Гиероном в подарок египетскому царю Птолемею тяжёлый многопалубный корабль «Сиракузия» никак не удавалось спустить на воду. Архимед соорудил систему блоков (полиспаст), с помощью которой он смог проделать эту работу одним движением руки. По легенде, Архимед заявил при этом: «Будь в моём распоряжении другая Земля, на которую можно было бы встать, я сдвинул бы с места нашу» (в другом варианте: «Дайте мне точку опоры, и я переверну мир»).

Осада Сиракуз

Инженерный гений Архимеда с особой силой проявился во время осады Сиракуз римлянами в 212 году до н. э. в ходе Второй Пунической войны. В этот момент Архимеду было уже 75 лет. Подробное описание осады Сиракуз римским полководцем Марцеллом и участия Архимеда в обороне содержится в сочинениях Плутарха и Тита Ливия.

Построенные Архимедом мощные метательные машины забрасывали римские войска тяжёлыми камнями. Думая, что они будут в безопасности у самых стен города, римляне кинулись туда, но в это время лёгкие метательные машины близкого действия забросали их градом ядер. Мощные краны захватывали железными крюками корабли, приподнимали их кверху, а затем бросали вниз, так что корабли переворачивались и тонули. В последние годы были проведены несколько экспериментов с целью проверить правдивость описания этого «сверхоружия древности». Построенная конструкция показала свою полную работоспособность.

Римляне вынуждены были отказаться от мысли взять город штурмом и перешли к осаде. Знаменитый историк древности Полибий писал: «Такова чудесная сила одного человека, одного дарования, умело направленного на какое-либо дело… римляне могли бы быстро овладеть городом, если бы кто-либо изъял из среды сиракузян одного старца».

По одной из легенд, во время осады римский флот был сожжён защитниками города, которые при помощи зеркал и отполированных до блеска щитов сфокусировали на них солнечные лучи по приказу Архимеда. Существует мнение, что корабли поджигались метко брошенными зажигательными снарядами, а сфокусированные лучи служили лишь прицельной меткой для баллист. Однако в эксперименте греческого учёного Иоанниса Саккаса (1973) удалось поджечь фанерную модель римского корабля с расстояния 50 м, используя 70 медных зеркал.. Тем не менее достоверность легенды сомнительна; ни Плутарх, ни другие античные историки при описании оборонительных изобретений Архимеда о зеркалах не упоминают, впервые этот эпизод обнаружен в трактате Анфимия Траллийского (VI век), одного из архитекторов собора Святой Софии в Константинополе (трактат был посвящён выпуклым и вогнутым зеркалам). В XII веке легенда получила популярность после публикации Иоанном Зонара́ обширной хроники мировой истории.

Осенью 212 году до н. э. вследствие измены Сиракузы были взяты римлянами. При этом Архимед был убит.

Смерть Архимеда

Рассказ о смерти Архимеда от рук римлян существует в нескольких версиях:

Рассказ Иоанна Цеца (Chiliad, книга II): в разгар боя 75-летний Архимед сидел на пороге своего дома, углублённо размышляя над чертежами, сделанными им прямо на дорожном песке. В это время пробегавший мимо римский воин наступил на чертёж, и возмущённый учёный бросился на римлянина с криком: «Не тронь моих чертежей!» Солдат остановился и хладнокровно зарубил старика мечом.
Рассказ Плутарха: «К Архимеду подошёл солдат и объявил, что его зовёт Марцелл. Но Архимед настойчиво просил его подождать одну минуту, чтобы задача, которой он занимался, не осталась нерешённой. Солдат, которому не было дела до его доказательства, рассердился и пронзил его своим мечом». Плутарх утверждает, что консул Марцелл был разгневан гибелью Архимеда, которого он якобы приказал не трогать.
Архимед сам отправился к Марцеллу, чтобы отнести ему свои приборы для измерения величины Солнца. По дороге его ноша привлекла внимание римских солдат. Они решили, что учёный несёт в ларце золото или драгоценности, и, недолго думая, перерезали ему горло.
Рассказ Диодора Сицилийского: «Делая набросок механической диаграммы, он склонился над ним. И когда римский солдат подошёл и стал тащить его в качестве пленника, он, целиком поглощённый своей диаграммой, не видя, кто перед ним, сказал: „Прочь с моей диаграммы!“ Затем, когда человек продолжил тащить его, он, повернувшись и узнав в нём римлянина, воскликнул: „Быстро, кто-нибудь, подайте одну из моих машин!“ Римлянин, испугавшись, убил слабого старика, того, чьи достижения являли собой чудо. Как только Марцелл узнал об этом, он сильно огорчился и совместно с благородными гражданами и римлянами устроил великолепные похороны среди могил его предков. Что касается убийцы, то он, кажется, был обезглавлен».
«Римская история от основания города» Тита Ливия (Книга XXV, 31): «Передают, что когда при той сильной суматохе, какую только могла вызвать распространившаяся во взятом городе паника, воины разбежались, производя грабёж, то много было явлено отвратительных примеров злобы и алчности; между прочим, один воин убил Архимеда, занятого черчением на песке геометрических фигур, не зная, кто он. Марцелл, говорят, был этим огорчён, озаботился погребением убитого, разыскал даже родственников Архимеда, и имя его и память о нём доставили последним уважение и безопасность».

Цицерон, бывший квестором на Сицилии в 75 году до н. э., пишет в «Тускуланских беседах» (книга V), что ему в 75 году до н. э., спустя 137 лет после этих событий, удалось обнаружить полуразрушенную могилу Архимеда; на ней, как и завещал Архимед, было изображение шара, вписанного в цилиндр.

Научная деятельность

Математика

По словам Плутарха, Архимед был просто одержим математикой. Он забывал о пище, совершенно не заботился о себе.

Работы Архимеда относились почти ко всем областям математики того времени: ему принадлежат замечательные исследования по геометрии, арифметике, алгебре. Так, он нашёл все полуправильные многогранники, которые теперь носят его имя, значительно развил учение о конических сечениях, дал геометрический способ решения кубических уравнений вида x^2 (a \pm x) = b, корни которых он находил с помощью пересечения параболы и гиперболы. Архимед провёл и полное исследование этих уравнений, то есть нашёл, при каких условиях они будут иметь действительные положительные различные корни и при каких корни будут совпадать.

Однако главные математические достижения Архимеда касаются проблем, которые сейчас относят к области математического анализа. Греки до Архимеда сумели определить площади многоугольников и круга, объём призмы и цилиндра, пирамиды и конуса. Но только Архимед нашёл гораздо более общий метод вычисления площадей или объёмов; для этого он усовершенствовал и виртуозно применял метод исчерпывания Евдокса Книдского. В своей работе «Послание к Эратосфену о методе» (иногда называемой «Метод механических теорем») он использовал бесконечно малые для вычисления объёмов. Идеи Архимеда легли впоследствии в основу интегрального исчисления.

Архимед сумел установить, что объёмы конуса и шара, вписанных в цилиндр, и самого цилиндра соотносятся как 1:2:3.

Лучшим своим достижением он считал определение поверхности и объёма шара — задача, которую до него никто решить не мог. Архимед просил выбить на своей могиле шар, вписанный в цилиндр.

В сочинении Квадратура параболы Архимед доказал, что площадь сегмента параболы, отсекаемого от неё прямой, составляет 4/3 от площади вписанного в этот сегмент треугольника (см. рисунок). Для доказательства Архимед подсчитал сумму бесконечного ряда:

Каждое слагаемое ряда — это общая площадь треугольников, вписанных в неохваченную предыдущими членами ряда часть сегмента параболы.

Помимо перечисленного, Архимед вычислил площадь поверхности для сегмента шара и витка открытой им «спирали Архимеда», определил объёмы сегментов шара, эллипсоида, параболоида и двуполостного гиперболоида вращения.

Следующая задача относится к геометрии кривых. Пусть дана некоторая кривая линия. Как определить касательную в любой её точке? Или, если переложить эту проблему на язык физики, пусть нам известен путь некоторого тела в каждый момент времени. Как определить скорость его в любой точке? В школе учат, как проводить касательную к окружности. Древние греки умели, кроме того, находить касательные к эллипсу, гиперболе и параболе. Первый общий метод решения и этой задачи был найден Архимедом. Этот метод впоследствии лёг в основу дифференциального исчисления.

Огромное значение для развития математики имело вычисленное Архимедом отношение длины окружности к диаметру.

Механика

Архимед прославился многими механическими конструкциями. Рычаг был известен и до Архимеда, но лишь Архимед изложил его полную теорию и успешно её применял на практике. Плутарх сообщает, что Архимед построил в порту Сиракуз немало блочно-рычажных механизмов для облегчения подъёма и транспортировки тяжёлых грузов. Изобретённый им архимедов винт (шнек) для вычерпывания воды до сих пор применяется в Египте.

Архимед является и первым теоретиком механики. Он начинает свою книгу «О равновесии плоских фигур» с доказательства закона рычага. В основе этого доказательства лежит аксиома о том, что равные тела на равных плечах по необходимости должны уравновешиваться. Точно также и книга «О плавании тел» начинается с доказательства закона Архимеда. Эти доказательства Архимеда представляют собой первые мысленные эксперименты в истории механики.

Астрономия

Архимед построил планетарий или «небесную сферу», при движении которой можно было наблюдать движение пяти планет, восход Солнца и Луны, фазы и затмения Луны, исчезновение обоих тел за линией горизонта. Занимался проблемой определения расстояний до планет; предположительно в основе его вычислений лежала система мира с центром в Земле, но планетами Меркурием, Венерой и Марсом, обращающимися вокруг Солнца и вместе с ним — вокруг Земли. В своем сочинении «Псаммит» донёс информацию о гелиоцентрической системе мира Аристарха Самосского.

Сочинения

До наших дней сохранились:

Квадратура параболы / τετραγωνισμὸς παραβολῆς — определяется площадь сегмента параболы.
О шаре и цилиндре / περὶ σφαίρας καὶ κυλίνδρου — доказывается, что объём шара равен 2/3 от объёма описанного около него цилиндра, а площадь поверхности шара равна площади боковой поверхности этого цилиндра.
О спиралях / περὶ ἑλίκων — выводятся свойства спирали Архимеда.
О коноидах и сфероидах / περὶ κωνοειδέων καὶ σφαιροειδέων — определяются объёмы сегментов параболоидов, гиперболоидов и эллипсоидов вращения.
О равновесии плоских фигур / περὶ ἰσορροπιῶν — выводится закон равновесия рычага; доказывается, что центр тяжести плоского треугольника находится в точке пересечения его медиан; находятся центры тяжести параллелограмма, трапеции и параболического сегмента.
Послание к Эратосфену о методе / πρὸς Ἐρατοσθένην ἔφοδος — обнаружено в 1906 году, по тематике частично дублирует работу «О шаре и цилиндре», но здесь используется механический метод доказательства математических теорем.
О плавающих телах / περὶ τῶν ὀχουμένων — выводится закон плавания тел; рассматривается задача о равновесии сечения параболоида, моделирующего корабельный корпус.
Измерение круга / κύκλου μέτρησις — до нас дошёл только отрывок из этого сочинения. Именно в нём Архимед вычисляет приближение для числа \pi.
Псаммит / ψαμμίτης — вводится способ записи очень больших чисел.
Стомахион / στομάχιον — дано описание популярной игры.
Задача Архимеда о быках / πρόβλημα βοικόν — ставится задача, приводимая к уравнению Пелля.
Ряд работ Архимеда сохранился только в арабском переводе:

Трактат о построении около шара телесной фигуры с четырнадцатью основаниями;
Книга лемм;
Книга о построении круга, разделённого на семь равных частей;
Книга о касающихся кругах.

Добавить комментарий