Пуанкаре Анри


Пуанкаре Анри
Родился: 29 апреля 1854 года.
Умер: 17 июля 1912 года.


Биография


Жюль Анри Пуанкаре (фр. Jules Henri Poincaré; 29 апреля 1854, Нанси, Франция — 17 июля 1912, Париж, Франция) — французский математик, механик, физик, астроном и философ. Глава Парижской академии наук (1906), член Французской академии (1908) и ещё более 30 академий мира, в том числе иностранный член-корреспондент Петербургской академии наук (1895).

Историки причисляют Анри Пуанкаре к величайшим математикам всех времён. Он считается, наряду с Гильбертом, последним математиком-универсалом, учёным, способным охватить все математические результаты своего времени. Его перу принадлежат более 500 статей и книг. «Не будет преувеличением сказать, что не было такой области современной ему математики, „чистой“ или „прикладной“, которую бы он не обогатил замечательными методами и результатами».

Среди его самых крупных достижений: Создание топологии.
Качественная теория дифференциальных уравнений.
Теория автоморфных функций.
Разработка новых, чрезвычайно эффективных методов небесной механики.
Создание математических основ теории относительности, а также обобщение принципа относительности на все физические явления.
Наглядная модель геометрии Лобачевского.

Ранние годы и обучение (1854—1879)

Анри Пуанкаре родился 29 апреля 1854 года в Нанси (Лотарингия, Франция). Его отец, Леон Пуанкаре (1828—1892), был профессором медицины в Университете Нанси. Мать Анри, Эжени Лануа (Eugénie Launois), всё свободное время посвящала воспитанию детей — сына Анри и младшей дочери Алины.

Среди родственников Пуанкаре имеются и другие знаменитости: кузен Раймон стал президентом Франции (с 1913 по 1920 год), другой кузен, известный физик Люсьен Пуанкаре (англ.), был генеральным инспектором народного просвещения Франции, а с 1917 по 1920 год — ректором Парижского университета.

С самого детства за Анри закрепилась репутация рассеянного человека, которую он сохранил на всю жизнь. В детстве он перенёс дифтерию, которая осложнилась временным параличом ног и мягкого нёба. Болезнь затянулась на несколько месяцев, в течение которых он не мог ни ходить, ни говорить. За это время у него очень сильно развилось слуховое восприятие и, в частности, появилась необычная способность — цветовое восприятие звуков, которое осталось у него до конца жизни.

Хорошая домашняя подготовка позволила Анри в восемь с половиной лет поступить сразу на второй год обучения в лицее. Там его отметили как прилежного и любознательного ученика с широкой эрудицией. На этом этапе его интерес к математике умерен — через некоторое время он переходит на отделение словесности. 5 августа 1871 года Пуанкаре получил степень бакалавра словесности с оценкой «хорошо». Через несколько дней Анри изъявил желание участвовать в экзаменах на степень бакалавра (естественных) наук, который ему удалось сдать, но лишь с оценкой «удовлетворительно», поскольку на письменном экзамене по математике он по рассеянности ответил не на тот вопрос.

В последующие годы математические таланты Пуанкаре проявлялись всё более и более явно. В октябре 1873 года он стал студентом престижной парижской Политехнической школы, где на вступительных экзаменах занял первое место. Его наставником по математике был Шарль Эрмит. В следующем году Пуанкаре опубликовал в «Анналах математики» свою первую научную работу по дифференциальной геометрии.

По результатам двухлетнего обучения (1875) Пуанкаре приняли в Горную школу, наиболее авторитетное в то время специальное высшее учебное заведение. Там он через несколько лет (1879), под руководством Эрмита, защитил докторскую диссертацию, о которой Гастон Дарбу, входивший в состав комиссии, сказал: «С первого же взгляда мне стало ясно, что работа выходит за рамки обычного и с избытком заслуживает того, чтобы её приняли. Она содержала вполне достаточно результатов, чтобы обеспечить материалом много хороших диссертаций».

Первые научные достижения (1879—1882)

Получив учёную степень, Пуанкаре начал преподавательскую деятельность в университете города Кан в Нормандии (декабрь 1879 года). Тогда же он опубликовал свои первые серьёзные статьи — они посвящены введённому им классу автоморфных функций.

Там же, в Кане, он познакомился со своей будущей женой Луизой Пулен д’Андеси (Louise Poulain d’Andecy). 20 апреля 1881 года состоялась их свадьба. У них родились сын и три дочери.

Оригинальность, широта и высокий научный уровень работ Пуанкаре сразу поставили его в ряд крупнейших математиков Европы и привлекли внимание других видных математиков. В 1881 году Пуанкаре был приглашён занять должность преподавателя на Факультете наук в Парижском университете и принял это приглашение. Параллельно, с 1883 по 1897, он преподавал математический анализ в Высшей Политехнической школе.

В 1881—1882 годах Пуанкаре создал новый раздел математики — качественную теорию дифференциальных уравнений. Он показал, каким образом можно, не решая уравнения (поскольку это не всегда возможно), получить практически важную информацию о поведении семейства решений. Этот подход он с большим успехом применил к решению задач небесной механики и математической физики.

Лидер французских математиков (1882—1899)

Десятилетие после завершения исследования автоморфных функций (1885—1895) Пуанкаре посвятил решению нескольких сложнейших задач астрономии и математической физики. Он исследовал устойчивость фигур планет, сформированных в жидкой (расплавленной) фазе, и обнаружил, кроме эллипсоидальных, несколько других возможных фигур равновесия.

В 1885 году король Швеции Оскар II организовал математический конкурс и предложил участникам на выбор четыре темы. Самой сложной была первая: рассчитать движение гравитирующих тел Солнечной системы. Пуанкаре показал, что эта задача (т. н. задача трёх тел) не имеет законченного математического решения. Тем не менее Пуанкаре вскоре предложил эффективные методы её приближённого решения. В 1889 году Пуанкаре (совместно с Полем Аппелем, исследовавшим четвёртую тему), получил премию шведского конкурса. Один из двух судей, Миттаг-Леффлер, писал о работе Пуанкаре: «Премированный мемуар окажется среди самых значительных математических открытий века». Второй судья, Вейерштрасс, заявил, что после работы Пуанкаре «начнётся новая эпоха в истории небесной механики». За этот успех французское правительство наградило Пуанкаре орденом Почётного легиона.

Осенью 1886 года 32-летний Пуанкаре возглавил кафедру математической физики и теории вероятностей Парижского университета. Символом признания Пуанкаре ведущим математиком Франции стало избрание его президентом Французского математического общества (1886) и членом Парижской академии наук (1887).

В 1887 году Пуанкаре обобщил на случай нескольких комплексных переменных теорему Коши и положил начало теории вычетов в многомерном комплексном пространстве.

В 1889 году выходит фундаментальный «Курс математической физики» Пуанкаре в 10 томах, а в 1892—1893 годах — два тома монографии «Новые методы небесной механики» (третий том был опубликован в 1899 году).

С 1893 года Пуанкаре — член престижного Бюро долгот (в 1899 году избран его президентом). С 1896 года переходит на университетскую кафедру небесной механики, которую занимал до конца жизни. В этот же период, продолжая работы по астрономии, он одновременно реализует давно продуманный замысел создания качественной геометрии, или топологии: с 1894 года он начинает публикацию статей, посвящённых построению новой, исключительно перспективной науки.

Последние годы

В августе 1900 года Пуанкаре руководил секцией логики Первого Всемирного философского конгресса, проходившего в Париже. Там он выступил с программным докладом «О принципах механики», где изложил свою конвенционалистскую философию: принципы науки суть временные условные соглашения, приспособленные к опыту, но не имеющие прямых аналогов в реальности. Эту платформу он впоследствии детально обосновал в книгах «Наука и гипотеза» (1902), «Ценность науки» (1905) и «Наука и метод» (1908). В них он также описал своё ви́дение сущности математического творчества, в котором главную роль играет интуиция, а логике отведена роль обоснования интуитивных прозрений. Ясный стиль и глубина мысли обеспечила этим книгам значительную популярность, они были сразу же переведены на многие языки. Одновременно в Париже проходил Второй Международный конгресс математиков, где Пуанкаре был избран председателем (все конгрессы были приурочены к Всемирной выставке 1900 г.).

В 1903 году Пуанкаре был включён в группу из 3 экспертов, рассматривавших улики по «делу Дрейфуса». На основании единогласно принятого экспертного заключения кассационный суд признал Дрейфуса невиновным.

Основной сферой интересов Пуанкаре в XX веке становятся физика (особенно электромагнетизм) и философия науки. Пуанкаре показывает глубокое понимание электромагнитной теории, его проницательные замечания высоко ценят и учитывают Лоренц и другие ведущие физики. С 1890 года Пуанкаре опубликовал серию статей по теории Максвелла, а в 1902 году начал читать курс лекций по электромагнетизму и радиосвязи. В своих статьях 1904—1905 годов Пуанкаре далеко опережает Лоренца в понимании ситуации, фактически создав математические основы теории относительности (физический фундамент этой теории разработал Эйнштейн в 1905 году).

В 1906 году Пуанкаре избран президентом Парижской академии наук. В 1908 году он тяжело заболел и не смог сам прочитать свой доклад «Будущее математики» на Четвёртом математическом конгрессе. Первая операция закончилась успешно, но спустя 4 года состояние Пуанкаре вновь ухудшилось. Скончался в Париже после операции от эмболии 17 июля 1912 года в возрасте 58 лет. Похоронен в семейном склепе на кладбище Монпарнас.

Вероятно, Пуанкаре предчувствовал свою неожиданную смерть, так как в последней статье описал нерешённую им задачу («последнюю теорему Пуанкаре»), чего никогда раньше не делал. Спустя несколько месяцев эта теорема была доказана Джорджем Биркгофом. Позже при содействии Биркгофа во Франции был создан Институт теоретической физики имени Пуанкаре.

Вклад в науку

Математическая деятельность Пуанкаре носила междисциплинарный характер, благодаря чему за тридцать с небольшим лет своей напряжённой творческой деятельности он оставил фундаментальные труды практически во всех областях математики. Работы Пуанкаре, опубликованные Парижской Академией наук в 1916—1956, составляют 11 томов. Это труды по созданной им топологии, автоморфным функциям, теории дифференциальных уравнений, многомерному комплексному анализу, интегральным уравнениям, неевклидовой геометрии, теории вероятностей, теории чисел, небесной механике, физике, философии математики и философии науки.

Во всех разнообразных областях своего творчества Пуанкаре получил важные и глубокие результаты. Хотя в его научном наследии немало крупных работ по «чистой математике» (общая алгебра, алгебраическая геометрия, теория чисел и др.), всё же существенно преобладают труды, результаты которых имеют непосредственное прикладное применение. Особенно это заметно в его работах последних 15—20 лет. Тем не менее открытия Пуанкаре, как правило, имели общий характер и позднее с успехом применялись в других областях науки.

Творческий метод Пуанкаре опирался на создание интуитивной модели поставленной проблемы: он всегда сначала полностью решал задачи в голове, а затем записывал решение. Пуанкаре обладал феноменальной памятью и мог слово в слово цитировать прочитанные книги и проведённые беседы (память, интуиция и воображение Анри Пуанкаре даже стали предметом настоящего психологического исследования). Кроме того, он никогда не работал над одной задачей долгое время, считая, что подсознание уже получило задачу и продолжает работу, даже когда он размышляет о других вещах. Свой творческий метод Пуанкаре подробно описал в докладе «Математическое творчество» (парижское Психологическое общество, 1908).

Поль Пенлеве так оценил значение Пуанкаре для науки:

Он всё постиг, всё углубил. Обладая необычайно изобретательным умом, он не знал пределов своему вдохновению, неутомимо прокладывая новые пути, и в абстрактном мире математики неоднократно открывал неизведанные области. Всюду, куда только проникал человеческий разум, сколь бы труден и тернист ни был его путь — будь то проблемы беспроволочной телеграфии, рентгеновского излучения или происхождения Земли — Анри Пуанкаре шёл рядом… Вместе с великим французским математиком от нас ушёл единственный человек, разум которого мог охватить всё, что создано разумом других людей, проникнуть в самую суть всего, что постигла на сегодня человеческая мысль, и увидеть в ней нечто новое.

Автоморфные функции

На протяжении XIX века практически все видные математики Европы участвовали в развитии теории эллиптических функций, оказавшихся чрезвычайно полезными при решении дифференциальных уравнений. Всё же эти функции не вполне оправдали возлагавшиеся на них надежды, и многие математики стали задумываться над тем, нельзя ли расширить класс эллиптических функций так, чтобы новые функции были применимы и для тех уравнений, где эллиптические функции бесполезны.

Пуанкаре впервые нашёл эту мысль в статье Лазаря Фукса, виднейшего в те годы специалиста по линейным дифференциальным уравнениям (1880). В течение нескольких лет Пуанкаре далеко развил идею Фукса, создав теорию нового класса функций, который он, с обычным для Пуанкаре равнодушием к вопросам приоритета, предложил назвать фуксовы функции (фр. les fonctions fuchsiennes) — хотя имел все основания дать этому классу своё имя. Дело закончилось тем, что Феликс Клейн предложил название «автоморфные функции», которое и закрепилось в науке. Пуанкаре вывел разложение этих функций в ряды, доказал теорему сложения и теорему о возможности униформизации алгебраических кривых (то есть представления их через автоморфные функции; это 22-я проблема Гильберта, решённая Пуанкаре в 1907 году). Эти открытия «можно по справедливости считать вершиной всего развития теории аналитических функций комплексного переменного в XIX веке».

При разработке теории автоморфных функций Пуанкаре обнаружил их связь с геометрией Лобачевского, что позволило ему изложить многие вопросы теории этих функций на геометрическом языке. Он опубликовал наглядную модель геометрии Лобачевского, с помощью которой иллюстрировал материал по теории функций.

После работ Пуанкаре эллиптические функции из приоритетного направления науки превратились в ограниченный частный случай более мощной общей теории. Открытые Пуанкаре автоморфные функции позволяют решить любое линейное дифференциальное уравнение с алгебраическими коэффициентами и находят широкое применение во многих областях точных наук.

Алгебра и теория чисел

Уже в первых работах Пуанкаре успешно применил теоретико-групповой подход, ставший для него важнейшим инструментом во многих дальнейших исследованиях — от топологии до теории относительности. Пуанкаре первым ввёл теорию групп в физику; в частности, он первым исследовал группу преобразований Лоренца. Он также внёс большой вклад в теорию дискретных групп и их представлений.

В ранний период творчества Пуанкаре исследовал кубические тернарные и кватернарные формы.

Топология

Предмет топологии ясно определил ещё Феликс Клейн в своей «Эрлангенской программе» (1872): это геометрия инвариантов произвольных непрерывных преобразований, своего рода качественная геометрия. Сам термин «топология» (вместо применявшегося ранее Analysis situs) ещё ранее предложил Иоганн Бенедикт Листинг. Некоторые важные понятия ввели Энрико Бетти и Бернхард Риман. Однако фундамент этой науки, причём достаточно детально разработанный для пространства любого числа измерений, создал Пуанкаре. Его первая статья на эту тему появилась в 1894 году.

Исследования в геометрии привели Пуанкаре к абстрактному топологическому определению гомотопии и гомологии. Также он впервые ввёл основные понятия и инварианты комбинаторной топологии, такие как числа Бетти, фундаментальную группу, доказал формулу, связывающую число рёбер, вершин и граней n-мерного многогранника (формула Эйлера — Пуанкаре), дал первую точную формулировку интуитивного понятия размерности.

Многомерный комплексный анализ

Пуанкаре обобщил на случай нескольких комплексных переменных теорему Коши, основал теорию вычетов для многомерного случая, положил начало исследованиям биголоморфных отображений областей комплексного пространства.

Астрономия и небесная механика

Пуанкаре опубликовал две классические монографии: «Новые методы небесной механики» (1892—1899) и «Лекции по небесной механике» (1905—1910). В них он успешно применил результаты своих исследований к задаче о движении трёх тел, детально изучив поведение решения (периодичность, устойчивость, асимптотичность и т. д.). Им введены методы малого параметра (теорема Пуанкаре о разложении интегралов по малому параметру), неподвижных точек, интегральных инвариантов, уравнений в вариациях, исследована сходимость асимптотических разложений. Обобщив теорему Брунса (1887), Пуанкаре доказал, что задача трёх тел принципиально не интегрируема. Другими словами, общее решение задачи трёх тел нельзя выразить через алгебраические или через однозначные трансцендентные функции координат и скоростей тел. Его работы в этой области считаются крупнейшими достижениями в небесной механике со времён Ньютона.

Эти работы Пуанкаре содержат идеи, ставшие позднее базовыми для математической «теории хаоса» (см., в частности, теорему Пуанкаре о возвращении) и общей теории динамических систем.

Пуанкаре принадлежат важные для астрономии труды о фигурах равновесия гравитирующей вращающейся жидкости. Он ввёл важное понятие точек бифуркации, доказал существование фигур равновесия, отличных от эллипсоида, в том числе кольцеобразных и грушевидных фигур, исследовал их устойчивость. За это открытие Пуанкаре получил золотую медаль Лондонского королевского астрономического общества (1900).

Физика и другие работы

Как член Бюро долгот, Пуанкаре участвовал в измерительных работах этого учреждения и опубликовал несколько содержательных работ по проблемам геодезии, гравиметрии и теории приливов.

С конца 1880-х годов и до конца жизни Пуанкаре много усилий посвящает электромагнитной теории Максвелла и её дополненному Лоренцем варианту. Он активно переписывается с Генрихом Герцем и Лоренцем, нередко подсказывая им правильные идеи. В частности, преобразования Лоренца Пуанкаре выписал в современном виде, в то время как Лоренц несколько ранее предложил их приближённый вариант. Тем не менее именно Пуанкаре назвал эти преобразования именем Лоренца. О вкладе Пуанкаре в разработку теории относительности см. ниже.

Именно по инициативе Пуанкаре молодой Антуан Анри Беккерель занялся изучением связи фосфоресценции и рентгеновских лучей (1896), и в ходе этих опытов была открыта радиоактивность урановых соединений. Пуанкаре первым вывел закон затухания радиоволн.

В последние два года жизни Пуанкаре живо интересовался квантовой теорией. В обстоятельной статье «О теории квантов» (1911) он доказал, что невозможно получить закон излучения Планка без гипотезы квантов, тем самым похоронив все надежды как-то сохранить классическую теорию.

Научные термины, связанные с именем Пуанкаре

Гипотеза Пуанкаре
Группа Пуанкаре
Двойственность Пуанкаре
Интеграл Пуанкаре — Картана
Лемма Пуанкаре
Метрика Пуанкаре
Модель Пуанкаре пространства Лобачевского
Нормальная форма Пуанкаре — Дюлака
Отображение Пуанкаре
Последняя теорема Пуанкаре
Сфера Пуанкаре
Теорема Коши — Пуанкаре
Теорема Пуанкаре — Бендиксона
Теорема Пуанкаре — Биркгофа — Витта
Теорема Пуанкаре — Вольтерры
Теорема Пуанкаре о векторном поле
Теорема Пуанкаре о возвращении
Теорема Пуанкаре о классификации гомеоморфизмов окружности
Теорема Пуанкаре о разложении интегралов по малому параметру
Теорема Пуанкаре о скорости роста целой функции
и многие другие.

Почести и награды

Награды и звания, полученные Пуанкаре:
1885: Премия Понселе, Парижская академия наук
1886: избран президентом Французского математического общества
1887: избран членом Парижской академии наук
1889: премия за победу в математическом конкурсе, король Швеции Оскар II
1889: орден Почётного легиона
1893: избран членом Бюро долгот (так исторически называется Парижский институт небесной механики)
1894: избран иностранным членом Лондонского королевского общества
1895: избран иностранным членом-корреспондентом Петербургской академии наук
1896: премия Жана Рейно, Парижская академия наук
1896: избран президентом Французского астрономического общества (Astronomie mathématique et de mécanique céleste)
1899: премия, Американское философское общество
1900: Золотая медаль Королевского астрономического общества, Лондон
1901: медаль Сильвестра, Королевское общество, Лондон
1903: золотая медаль фонда им. Н. И. Лобачевского (Физико-математическое общество Казани), как рецензенту Давида Гильберта
1905: Премия Бойяи, Венгерская академия наук
1905: медаль Маттеуччи, Итальянское научное общество
1906: избран президентом Парижской академии наук
1908: избран членом Французской академии (не путать с Парижской академией наук)
1909: золотая медаль, Французская ассоциация содействия развитию науки
1911: медаль Кэтрин Брюс, Тихоокеанское астрономическое общество
1912: избран директором Французской академии

Добавить комментарий


Защитный код
Обновить